About 52 results
Open links in new tab
  1. What exactly is a Bayesian model? - Cross Validated

    Dec 14, 2014 · A Bayesian model is a statistical model made of the pair prior x likelihood = posterior x marginal. Bayes' theorem is somewhat secondary to the concept of a prior.

  2. Posterior Predictive Distributions in Bayesian Statistics

    Feb 17, 2021 · Confessions of a moderate Bayesian, part 4 Bayesian statistics by and for non-statisticians Read part 1: How to Get Started with Bayesian Statistics Read part 2: Frequentist …

  3. Who Are The Bayesians? - Cross Validated

    Aug 14, 2015 · What distinguish Bayesian statistics is the use of Bayesian models :) Here is my spin on what a Bayesian model is: A Bayesian model is a statistical model where you use …

  4. What is the best introductory Bayesian statistics textbook?

    Which is the best introductory textbook for Bayesian statistics? One book per answer, please.

  5. Help me understand Bayesian prior and posterior distributions

    The basis of all bayesian statistics is Bayes' theorem, which is $$ \mathrm {posterior} \propto \mathrm {prior} \times \mathrm {likelihood} $$ In your case, the likelihood is binomial. If the …

  6. r - Understanding Bayesian model outputs - Cross Validated

    Sep 3, 2025 · In a Bayesian framework, we consider parameters to be random variables. The posterior distribution of the parameter is a probability distribution of the parameter given the …

  7. bayesian - prior and posterior predictive distributions, Bayes …

    Nov 20, 2023 · You have the answer in your first line. The posterior predictive is $$ p (y^ {new} \mid y^ {old} ) = \int_\theta p (y^ {new} \mid \theta) p (\theta \mid y^ {old}) \, d\theta $$ The …

  8. How to choose prior in Bayesian parameter estimation

    Dec 15, 2014 · The problem is that if you choose non-conjugate priors, you cannot make exact Bayesian inference (simply put, you cannot derive a close-form posterior). Rather, you need to …

  9. Bayesian and frequentist reasoning in plain English

    Oct 4, 2011 · How would you describe in plain English the characteristics that distinguish Bayesian from Frequentist reasoning?

  10. What is the difference in Bayesian estimate and maximum …

    Bayesian estimation is a bit more general because we're not necessarily maximizing the Bayesian analogue of the likelihood (the posterior density). However, the analogous type of estimation …